
Eurographics Symposium on Parallel Graphics and Visualization (2022)
R. Bujack, J. Tierny, F. Sadlo (Editors)

GraphWaGu: GPU Powered Large Scale Graph Layout
Computation and Rendering for the Web

Landon Dyken1, Pravin Poudel2, Will Usher3, Steve Petruzza2, Jake Y. Chen1, Sidharth Kumar1

1University of Alabama at Birmingham
2Utah State University

3Intel

Abstract
Large scale graphs are used to encode data from a variety of application domains such as social networks, the web, biological
networks, road maps, and finance. Computing enriching layouts and interactive rendering play an important role in many of
these applications. However, producing an efficient and interactive visualization of large graphs remains a major challenge,
particularly in the web-browser. Existing state of the art web-based visualization systems such as D3.js, Stardust, and NetV.js
struggle to achieve interactive layout and visualization for large scale graphs. In this work, we leverage the latest WebGPU
technology to develop GraphWaGu, the first WebGPU-based graph visualization system. WebGPU is a new graphics API that
brings the full capabilities of modern GPUs to the web browser. Leveraging the computational capabilities of the GPU using this
technology enables GraphWaGu to scale to larger graphs than existing technologies. GraphWaGu embodies both fast parallel
rendering and layout creation using modified Frutcherman-Reingold and Barnes-Hut algorithms implemented in WebGPU
compute shaders. Experimental results demonstrate that our solution achieves the best performance, scalability, and layout
quality when compared to current state of the art web-based graph visualization libraries. All of our source code for the project
is available at https://github.com/harp-lab/GraphWaGu.

1. Introduction

A graph is used to represent connected entities and the relation-
ships between them. Graphs are ubiquitous, appearing in many ap-
plication domains, such as social networks, the web, the semantic
web, road maps, communication networks, biology, and finance. It
is common to process and analyze graphs for the purpose of ex-
tracting features such as connected components, cliques/triangles,
and shortest paths [JDG∗20, HJC∗19]. There are many produc-
tion level graph mining [CDGP20, KG19, TFS∗15, AN16] and an-
alytic [DGH∗19, NLP13] systems to perform these kinds of tasks.
Visualizing graphs [HMM00] where nodes and edges are mapped
and projected to the 2D plane is another crucial task. There are
many applications of graph visualization, including community de-
tection [CBP14], cluster analysis [AVHK06, EF96], and summa-
rizing and understanding [KKVF15] the overall structure of con-
nected data. There are two aspects associated with visualizing a
graph in 2D, layout creation (also referred to as graph drawing),
where Cartesian coordinates are computed for every node of the
graph, and rendering, where nodes and edges are rendered to an
image based on the computed layout. In this paper, we limit the
discussion of layout creation and rendering to undirected graphs.

With the advent of big data and large scale applications lever-
aging HPC resources, we are observing graphs of increasing
sizes [SMS∗17], with millions of vertices and edges. Interactively

visualizing such large scale graphs is challenging, as the massive
number of nodes and edges poses a severe computational and ren-
dering challenge. This problem is further exacerbated for web-
based visualization systems. The web browser has become the pre-
ferred modality for data visualization, as it provides a standardized
cross-platform environment through which applications can be de-
ployed to users. Existing state of the art web based graph visual-
ization libraries such as D3.js [BOH11], Cytoscape.js [FLH∗16],
and Stardust [RLH17] struggle to achieve interactive rendering and
layout creation for such large scale graphs.

To deal with visualizing large graphs, existing state of the art
graph mining and analytic systems perform concurrent parallel ex-
ecution, leveraging either shared memory parallelism on GPUs or
distributed parallelism through MPI. Existing web-based graph vi-
sualization libraries, however, have either been limited to serial ex-
ecution on the CPU, as in D3.js, or have leveraged GPU capabil-
ities for rendering only, as in Stardust.js. These limitations have
caused existing web-based graph visualization systems to struggle
with scaling to large graphs while maintaining interactivity. We-
bGPU [Web] is a new technology that enables addressing this lim-
itation in the web browser. Currently in development for all ma-
jor browsers, WebGPU is a low-level graphics API similar to Di-
rectX 12, Vulkan, and Metal, that brings the advanced rendering
and computational capabilities of modern GPUs to web browser

© 2022 The Author(s)
Eurographics Proceedings © 2022 The Eurographics Association.

Dyken et al. / GraphWaGu: GPU Powered Large Scale Graph Layout Computation and Rendering for the Web

applications. Compared to WebGL [Gro22], the current standard
for GPU rendering on the web which is used by Stardust [RLH17]
and NetV.js [HPZC21] to accelerate rendering, WebGPU provides
a significant increase in GPU capabilities. Specifically, WebGPU
provides compute shaders and storage buffers, which are essential
for implementing computational algorithms on the GPU.

We have developed a web-based graph visualization library,
GraphWaGu, that uses WebGPU to leverage the GPU’s compu-
tational power for layout creation and rendering for undirected
graphs in 2 dimensions. By doing so, GraphWaGu is capable of
visualizing large-scale networks at interactive frame rates. In par-
ticular, we make the following specific contributions:

� The first parallel and scalable WebGPU based graph rendering
system, capable of rendering up to 100;000 nodes and 2;000;000
edges with interactive frame rates (� 10 FPS)
� The first parallel WebGPU based implementation of force di-

rected layout computation using the Frutcherman-Reingold al-
gorithm.
� An optimized parallel implementation for force directed layout

computation using quadtree generation and traversal for Barnes-
Hut simulation in WebGPU compute shaders (without recursion
or use of pointers).
� Experimental studies to compare the performance and scalabil-

ity of our WebGPU solutions against state of the art web-based
graph visualization libraries. For 100;000 nodes and 2;000;000
edges, we maintain rendering frame rates 4� higher than the
next best library (NetV.js) and layout creation times up to half
that of D3.js.

2. Background and Related Work

In this section we cover relevant background work for both phases
of graph visualization: graph layout creation and rendering. We
then briefly discuss the key features of WebGPU that we leverage
in GraphWaGu.

2.1. Layout Creation

A graph G is comprised of a vertex (or node) set V and an edge
(or link) set E, with cardinalities jV j and jEj respectively. When
rendering a graph, every vertex is projected on a 2D plane, where
the position of a vertex v is denoted by Pv. In this paper, we choose
to restrict our discussion to only undirected graphs. We define two
nodes u and v in G to be adjacent to each other if and only if eu;v 2
E.

Pioneering work by Eades [Ead84] proposed the spring embed-
der algorithm (SE) to generate aesthetically pleasing layouts by
treating undirected graphs as mechanical systems of steel balls
(nodes) and springs (edges). The spring force acting between nodes
attracts or repels them from each other depending on the distance
between them, bringing change to the energy of system. The nodes
are allowed to move from their initial placement due to these spring
forces until a global minimum energy state is attained. There have
been multiple further works such as the KK method [KK∗89] and
Frutherman and Reingold (FR) force directed algorithm [FR91] to
generate aesthetic graph layouts. The FR algorithm introduces a

spring-electric model as a modification to the SE algorithm that
imitates a physics simulation where vertices map to electrical par-
ticles and edges correspond to springs following Hook’s law. In this
method, attractive forces are computed between adjacent nodes that
pull them together, and repulsive forces are computed between ev-
ery pair of non-adjacent nodes that repel them from each other. The
algorithm defines an ideal length l where these forces will cancel
out, distance duv as euclidean distance between u and v, and com-
putes attractive forces (fa) and repulsive forces (fr) as follows:

fa(d) =
duv

2

l
where u 6= v and eu;v 62 E

fr(d) =
�l2

duv
where eu;v 2 E

When the algorithm reaches a state of equilibrium or minimum en-
ergy, the layout computed tends to have edges of uniform length l
and satisfying distance between separate connected components.

The force directed FR algorithm is an iterative process; ev-
ery iteration moves vertices by computing attractive and repul-
sive forces until a suitable layout is obtained. In each iteration,
the cost to compute repulsive forces between every pair of nodes
is O(jV j2) and the cost to compute the attractive forces of ev-
ery edge is O(jEj). Due to the O(jV j2) repulsive force calcula-
tion, this method is computationally expensive for graphs with
large numbers of nodes and non-interactive at scale. A number of
works have been proposed to address this issue, such as a grid-
variant algorithm [FR91], Fast Multipole Method [HK00], Barnes-
Hut (BH) approximation [BH86], Well-Separated Pair Decompo-
sition [LWZ15], Random Vertex Sampling [Gov19], and combi-
nations of these [Gov19]. These can reduce the repulsive force
computation to O(jV jlogjV j), or even O(jV j) for Random Vertex
Sampling. BH is one of the most popular techniques among these
techniques due to its simplicity. BH utilizes a quadtree data struc-
ture to approximate forces between nodes when they are distant
from each other, allowing the computation of repulsive forces with
O(jV jlogjV j) average cost.

Prior work has also explored parallelizing graph layout creation.
Brinkmann et al. [BRT17] parallelized the ForceAtlas2 [JVHB14]
algorithm, while Grama et al. [GKS94] and Burtscher and Pin-
gali [BP11] dealt with parallelizing the quadtree construction and
traversal steps necessary for BH. There have also been efforts to
improve performance by CPU parallelization, with Tikhonova and
Ma [TM08] using a pre-processing step and grouping of vertices.
These works successfully improved the speed and scalability of
force directed layout creation, but are limited to GPU programming
frameworks like CUDA and OpenCL. We propose a unique parallel
implementation of layout creation in the web written completely in
the WebGPU shading language (WGSL) [wgs].

2.2. Graph Rendering

Several visualization frameworks provide APIs to render graphs in
the web, with some of the most popular being D3.js [BOH11], Cy-
toscape.js [FLH∗16], and Stardust [RLH17]. Most of these visu-
alization frameworks use Canvas API [con22a] or SVG [con22b]
to render, which are poor in terms of scalability and performance.

© 2022 The Author(s)
Eurographics Proceedings © 2022 The Eurographics Association.

Dyken et al. / GraphWaGu: GPU Powered Large Scale Graph Layout Computation and Rendering for the Web

The Canvas API performs better than SVG, but the ability of both
to handle large-scale data with real time interaction is limited com-
pared to GPU-accelerated technologies. This can be observed in
Figure 3. The WebGL API is a more scalable and powerful alter-
native to Canvas API and SVG but requires users wanting visual-
izations to create their own rendering pipeline with shader code.
In recent years though, new WebGL-based tools provide the neces-
sary abstractions to perform easy rendering of large-scale graphs.
Examples of such libraries are Stardust, Sigma.js [Coe18], and
NetV.js [HPZC21]. Among these, Stardust presents itself as a com-
plement to D3.js whereas Sigma.js uses a separate library, graphol-
ogy [Pli21], to manage its graph model. NetV.js [HPZC21] also
uses WebGL and promises higher scalability thanks to its concise
programming interfaces which allow an efficient way of storing
and manipulating graph data. Although WebGL based libraries like
NetV.js promise good rendering ability, their overall performance
is still limited by the limitations of WebGL, and they must rely on
serial graph layout libraries like D3.js for graph generation.

2.3. WebGPU

WebGPU is a new graphics API that brings the full capabilities
of modern GPUs to the web browser. WebGPU is built from the
ground up, complete with its own shading language WGSL. In
contrast to WebGL, WebGPU is not a port of an existing native
API, though it is designed to easily map to modern APIs like Di-
rectX12, Vulkan, and Metal for performance, and draws inspiration
from them in its design.

WebGPU provides a number of advantages over WebGL for
developing complex compute and rendering applications in the
browser. WebGPU enables rendering applications to construct a de-
scription of the rendering or compute pipeline state ahead of time,
specifying the shaders, input and output data locations, and data
layouts, to build a fixed description of the pipeline. Data are fed to
the pipeline through bind groups, whose layouts similarly encode
ahead of time the structure of the data to be provided to the pipeline,
while allowing the buffers being read or written to be changed ef-
ficiently at execution time. The pre-configured state stored in the
pipeline significantly reduces state configuration overhead costs in-
curred during execution, while still allowing flexibility as to what
data buffers are read or written when the pipeline is executed. Fur-
thermore, WebGPU supports compute shaders and storage buffers,
providing unique support for developing GPU algorithms capable
of processing large data sets in the browser. Prior work on deep
neural networks [HKUH17] and scientific visualization [UP20] has
leveraged the capabilities of WebGPU to deploy large-scale GPU
parallel compute applications in the browser.

3. Implementation

We implement rendering and force-directed layout techniques in
our tool, GraphWaGu, a web-based GPU-accelerated library for
interacting with large-scale graphs. GraphWaGu utilizes WebGPU
to create visualizations from input graphs onto mouse-interactive
HTML Canvas5 elements. GraphWaGu also presents GPU imple-
mentations of Fruchterman-Reingold and Barnes-Hut approximate
force-directed layout algorithms using WebGPU compute shaders.

Together, these features establish a user-friendly prototype for com-
puting, evaluating, and recomputing graph layouts on the web. We
structure this section by first discussing the graph rendering in or-
der to introduce how GraphWaGu handles redrawing the changing
of node positions that comes with interactivity and force directed
layout iteration, then propose our algorithms for computing layouts
with and without BH approximation.

3.1. Graph Rendering

The GraphWaGu approach to graph rendering is built to take ad-
vantage of the unique features of WebGPU for web-based graphics
using bind groups and large storage buffers. At system initializa-
tion, we create rendering pipelines for nodes and edges, with bind
groups containing edge and node storage buffers, and then start an
animation frame to continuously run these pipelines’ render passes.
The edge buffer consists of 2� jEj uint32s corresponding to the in-
dices of each edge’s source and target nodes, and the node buffer is
filled with 2� jV j float32 positions. For view changes such as pan-
ning and zooming, events are captured by an HTML canvas con-
troller and new view parameters are written to a uniform buffer,
while changes to the node and edge data buffers can be written by
WebGPU API calls in the CPU or by shaders running on the GPU.

For both pipelines, vertex buffers of one element are used to de-
scribe the type of primitive to be drawn; for edges a line and for
nodes two triangles in the form of a square. A draw call is made to
instance jV j nodes and jEj edges, and in each vertex shader, the in-
stances access their corresponding element in the storage buffers
and return its position to the rest of the pipeline. For edges, a
color is simply returned in the fragment shader. For nodes, a check
around the radius is made and the fragment alpha is computed as
1 minus the sigmoid of the distance of the fragment to the node
center to simulate anti-aliasing.

There are two main advantages to this approach. First, the po-
sition of edges does not have to be pre-computed in order to cre-
ate and fill a vertex buffer. When node positions change, the edge
vertex shader will freely output the correct position by checking
against the node storage buffer. Second, the storage buffers can be
used in other WebGPU pipelines, e.g. to write new node positions
each iteration of GraphWaGu force directed compute shaders. This
saves the time of copying data from the source of the graph layout
computation to the rendering tool.

3.2. Graph Layout Computation

We present algorithms GraphWaGu FR and GraphWaGu BH for
Frutcherman-Reingold and Barnes-Hut approximate force directed
layouts respectively. Iterations of the algorithms are computed and
applied to nodes using WebGPU compute passes. These compute
passes are run parallel to the render passes of the GraphWaGu ani-
mation frame, so that as new node positions are computed and ap-
plied, a new graph is rendered.

3.2.1. WebGPU Frutcherman-Reingold

Before running the GraphWaGu FR algorithm, we initialize the
compute pipelines needed: adjacency matrix creation, force calcu-
lation, and force application with their respective compute shaders

© 2022 The Author(s)
Eurographics Proceedings © 2022 The Eurographics Association.

Dyken et al. / GraphWaGu: GPU Powered Large Scale Graph Layout Computation and Rendering for the Web

Algorithm 1 GraphWaGu FR
1: Input: G(V;E);coolingFactor
2: for e in E do
3: ad jacencyMatrix[e:source + e:target � jV j] = 1
4: ad jacencyMatrix[e:target + e:source� jV j] = 1
5: end for
6: while coolingFactor � e do
7: for i 0 to jV j do in parallel
8: f = 0
9: v = V [invocationId]

10: for i 0 to jV j do
11: if ad jacencyMatrix[invocationId + i� jV j] then
12: f f + fa(v;V [i])
13: else
14: f f + fr(v;V [i])
15: end if
16: end for
17: F [invocationID] = f

| f | �min(coolingFactor; j f j)
18: end for
19: for i 0 to jV j do in parallel
20: V [i]:position V [i]:position + F [i]
21: end for
22: coolingFactor coolingFactor � initialCoolingFactor
23: end while

and necessary bind group layouts. An overview of the general algo-
rithm used in WebGPU Frutcherman-Reingold is detailed in Algo-
rithm 1. It follows closely to the original force directed algorithm
proposed by Frutcherman and Reingold, apart from the use of an
adjacency matrix and parallel computation of forces.

An adjacency matrix A for a graph G is defined as a jV j by jV j
matrix where A(i; j) is 0 when (i; j) is not in E and 1 when (i; j) is.
This structure allows us to check for edges in the force calculation
shader in O(1) time to decide whether to compute attractive or re-
pulsive forces for that node. If an adjacency matrix or similar data
structure is not used, attractive forces must be computed separately
from repulsive forces in O(jEj) time. A concern when using an ad-
jacency matrix is that it can require a large amount of memory, as
its size grows exponentially with jV j.

To address this, we note that each element of the adjacency ma-
trix requires only one bit to track whether two nodes are connected
or not. We create the adjacency matrix with jV j� jV j bits and ac-
cess individual entries through bitwise operations and shifts in the
compute shader. A simplified depiction of this is in lines 2-5 of
Algorithm 1

Force computation is shown in lines 7-18 of Algorithm 1, where
either repulsive or attractive forces are calculated for each vertex
to each other vertex using the adjacency matrix, and application is
shown in lines 19-21. We parallelize the FR force directed algo-
rithm by dispatching one GPU thread per node, effectively running
a parallel for loop over the node buffer and computing or applying
forces for each. This method runs into issues when jV j is above
65;535, as that is the maximum supported dispatch size in We-
bGPU. To address this we create batches of nodes of 50;000, and
run a separate compute pass for each batch. However, even with

parallelizing the repulsive force computation this method struggles
to scale to very high node counts as the exact force computation
incurs O(jV j2) cost. This requires us to implement some method of
approximating these forces, for which we use BH approximation to
achieve O(jV jlogjV j).

Algorithm 2 GraphWaGu BH Algorithm
1: Input: G(V, E), coolingFactor
2: createSortedEdgeLists();
3: while coolingFactor � e do
4: createQuadTree();
5: for v 0 to jV j do in parallel
6: for ei; j in E with i or j = v do
7: F [v] F [v] + fa(V [i];V [j])
8: end for
9: end for

10: computeRepulsiveForces();
11: for i 0 to jV j do in parallel
12: V [i]:position V [i]:position + F [i]
13: F [i] 0
14: end for
15: coolingFactor coolingFactor � initialCoolingFactor
16: end while

3.2.2. WebGPU Barnes-Hut

The Barnes-Hut approximation algorithm [BH86] has multiple
challenges to be effectively implemented in parallel systems. This
task has been addressed in previous work by [BP11], where they
showed an efficient method of optimizing this process in CUDA
utilizing barriers and thread-voting functions. The Barnes-Hut al-
gorithm involves building and traversing a quadtree data structure,
two tasks typically implemented through recursion, with nodes
having pointers to their children, and dynamic allocation storage in
a heap to hold the tree. Recursion, pointers, and dynamic allocation
at runtime are not supported in programming compute shaders in
WebGPU. Methods for building quadtrees in parallel do exist such
as through the use of linear quadtrees [Gar82], and are depicted in
work such as [Kar12], but these are not adapted specifically for the
task of layout creation and often rely on structures and GPU pro-
gramming functions not currently available in the WebGPU API.
We present our own methods of building and traversing a quadtree
in compute passes on the GPU compatible with the WebGPU API.
Our quadtree implementation utilizes one of the two approaches
described by [Sam90] for pointerless representations, treating the
quadtree as a collection of its leaf nodes, with directional codes for
indexes of its northwest (NW), northeast (NE), southwest (SW),
and southeast (SE) children. From the same source, we can also
obtain the weak upper bound of 6 � jV j as an appropriate limit to
the total number of items in our quadtree, including null pointers.

We safely initialize a WebGPU buffer of length 6�jV j to contain
all items within the quadtree, where each item is a struct with empty
attributes for its boundary rectangle, center of mass, mass, and in-
dices of NW, NE, SW, and SE children in the same buffer. This
buffer is bound to a compute pipeline which runs at the beginning of
each GraphWaGu BH layout iteration. When creating a quadtree, a
bounding box must first be computed containing all of the nodes of

© 2022 The Author(s)
Eurographics Proceedings © 2022 The Eurographics Association.

Dyken et al. / GraphWaGu: GPU Powered Large Scale Graph Layout Computation and Rendering for the Web

Figure 1: Inserting a 4 node graph into an empty quadtree. At the top, a visualization of the classic quadtree creation using pointers and
dynamic allocation is shown, from left to right. To the left of the example graph, the same sequence of insertions is shown for the GraphWaGu
BH algorithm into our quadtree buffer, from top to bottom. In the first insertion, the quadtree struct at index 0 is set to the first node, and
counter is made 1. At insertion 2, a partition is made, so the 0 spot in our buffer becomes cell C1 with center of mass between 1 and 2, its
NW, NE, SW, and SE attributes are set, and counter increments by 4. Insertion 3 changes the center of mass of C1, and insertion 4 does the
same and requires another partition to make C2. Ellipses at the end of each buffer indicate the array should be size 6� jV j= 24, -1 refers to
null items, and 0s are empty quadtree structs.

the input graph. In order to simplify this step and maintain robust-
ness for our float32 node positions, GraphWaGu BH forces all node
positions within the range [0;1] by clamping values when forces
are applied to change node positions. Because duplicate node posi-
tions can lead to loops of partitioning when creating a quadtree, this
clamp also applies a small position randomization on the bound-
aries. The first step of the creation shader then is to declare a root
node with boundary rectangle [0;0;1;1] and a counter variable to
keep track of the latest insertion into the quadtree buffer. A for loop
is then run to insert all nodes from the node data buffer. Each node
insertion is accomplished iteratively, incrementing counter and set-
ting the NW, NE, SW, and SE attributes to the indices of children
when partitions are made. Center of mass and total mass are com-
puted in the usual way for cells and leaf nodes and stored in the
struct attributes of the correct index in the quadtree buffer. An ex-
ample quadtree creation is given by Figure 1 showing this method.

Once the quadtree is created, attractive and repulsive forces are
computed in their own compute pipelines before being applied in
the same way as GraphWaGu FR. An overview of the full Graph-
WaGu BH algorithm is given in Algorithm 2. Attractive forces in
this algorithm now have to be computed in O(jEj) time, as an ad-
jacency matrix is not built and repulsive and attractive forces must
be computed in separate passes. To speed this up, the algorithm
begins by creating sorted lists (by source index and target index)
of the input graph’s edges so that we can parallelize the attractive
force computation. This allows us to compute attractive forces for

each node in parallel, dispatching a thread for each node which then
iterates through the list of edges it is a part of and accumulates at-
tractive forces. This is seen in lines 5-9 in Algorithm 2. The same
force buffer is then used for the repulsive force pass, taking in the
result of the attractive forces and returning the total force results. In
order to traverse the quadtree to compute Barnes-Hut approximate
repulsive forces for each node, a large buffer is sent to be used as
a pseudo-stack by the repulsive force compute shader described in
line 10 of Algorithm 2. Because the average height of a quadtree is
O(log4jV j), each traversal will add around this many items to the
stack, so the size of the stack buffer is set to just above jV jlog4jV j.
Two variables are used to keep track of the shader’s current place
in the stack and the last item it needs to process. An example of
this method is shown in Figure 2. Introducing parallelism to the
repulsive force pass in this algorithm is done in the same way as
force computation in the GraphWaGu FR algorithm, by dispatch-
ing a thread per node, effectively running a parallel for loop over
the nodes.

4. Evaluation

To evaluate the performance of GraphWaGu, we performed three
different sets of experiments comparing our solution with state-of-
the-art techniques. In particular, we report: (i) rendering benchmark
using synthetic graphs at different scales; (ii) layout generation
benchmark using synthetic graphs at different scales; (iii) layout
creation and rendering of a variety of real graphs.

© 2022 The Author(s)
Eurographics Proceedings © 2022 The Eurographics Association.

Dyken et al. / GraphWaGu: GPU Powered Large Scale Graph Layout Computation and Rendering for the Web

Figure 2: Computing repulsive forces for node 2 inGraphWaGuBH algorithm. This uses the same graph and quadtree buffer as 1. First,
the root item of the quadtree C1 is assigned to the start of the stack and is checked. This is a cell item containing 4 children, so each child
is evaluated, adding the cell C2 to the stack. This cell is then checked, and the distance from node 2 is far enough away to approximate the
repulsive force, so we do not check C2's children. We then reach the end of the stack buffer, so the computation is �nished.

4.1. Experimental setup

We ran all experiments on two different system setups with browser
Google Chrome Canary: (i) equipped with AMD Ryzen 4600 CPU
(3 GHZ, 6 cores), 8GB RAM memory and integrated AMD Radeon
C7 GPU (512MB Video RAM); (ii) equipped with AMD Ryzen
5600 CPU (3.7 GHz, 6 cores), 16GB RAM memory and a dedi-
cated NVIDIA GeForce RTX 2060 GPU. All the code for the ap-
plication running the node rendering and layout creation pipelines
is written inReact, compiled withbabeltranscompiler, and bundled
with webpack module bundler.

For both the rendering and layout computation benchmarks, we
generated 11 graphs with varying vertex counts, all with com-
pletely random edge connectivity and initial node positions using
the javascriptMath.randomfunction. For these arti�cial graphs, we
maintained an edge to vertex count ratio (|V|:|E|) of 20 to model
real-world data (similar to the experimental setup of [HPZC21]).
The total vertex count for each graph varies from 102 to 106. To
demonstrate that our performance results are not biased by the na-
ture of the synthetic (randomly generated) graphs, we also per-
formed an additional evaluation using datasets generated by a wide
range of applications and hosted by the SuiteSparse Matrix Col-
lection [KAB� 19]. Formerly known as the University of Florida
Sparse Matrix Collection, these diverse datasets are large and ac-
tively maintained resources that arise in real applications. From this

collection, we use �ve graphs and report layout and performance
results in Table 1.

4.2. Graph Rendering Benchmark

We compare the rendering performance ofGraphWaGuwith other
popular web-based graph rendering frameworks: NetV.js, D3.js
(Canvas and SVG), G6.js, Cytoscape, Sigma.js, and Stardust.
Among these frameworks, D3.js is the most popular due to its ro-
bust catalogue of visualization options and built-in libraries for al-
gorithms such as computing force directed graph layouts. However,
due to its dependency on the DOM tree and SVG, D3.js cannot
effectively handle a large number of graphical marks, especially
when running animation. The frameworks NetV.js, Sigma.js, and
Stardust are built on top of WebGL, and can therefore utilize the
GPU for high performance rendering; however, they do not accel-
erate graph layout computation. G6.js does not leverage the GPU
for rendering nor computation, and has limited scalability for large
scale graph rendering as a result.

In order to properly stress test the abilities of the rendering li-
braries chosen, we one-by-one call each to render a completely
different graph of the size being tested each frame. We randomly
generate the graphs for each frame as detailed in the experimental
setup, and do not include graph generation time in the time it takes
to complete a frame. Frames per second (FPS) is calculated for each

© 2022 The Author(s)
Eurographics Proceedings © 2022 The Eurographics Association.

Dyken et al. / GraphWaGu: GPU Powered Large Scale Graph Layout Computation and Rendering for the Web

Figure 3: Rendering performance on computer with high-end ded-
icated GPU (NVIDIA GeForce RTX 2060). Performance for all
rendering libraries on dedicated GPU. Rendering performance of
GraphWaGubecomes best among competitors after10;000 nodes
and is able to render the graph with50;000 nodes and1;000;000
edges in around 10fps. With ample GPU power, WebGL and We-
bGPU systems outcompete serial based libraries.

Figure 4: Rendering performance on low-end computer with in-
tegrated GPU (AMD Radeon C7). The rendering performance of
GraphWaGubecomes signi�cantly better than other visualization
frameworks after1;000 nodes and20;000 edges. Because of the
lack of GPU power, D3 canvas is able to be competitive with GPU-
accelerated libraries like NetV and Stardust.

library after repeating this process for a total duration of �ve sec-
onds for each graph size. The FPS is then averaged over this �ve
seconds, and this is what we record, capped at 60 FPS since it is the
maximum display frequency. This process of FPS calculation was
done using thestatslibrary [Cab]. We report these FPS results for
all libraries on both the dedicated and integrated GPUs in Figures
3 and 4 respectively.

On both systems,GraphWaGuoutperforms other frameworks
and is the most scalable solution. The rendering performance of
GraphWaGuis signi�cantly better for the largest scale graphs even
when using an integrated GPU (see Figure 4). On the integrated
GPU, WebGL based libraries (NetV and Stardust) performed sim-
ilarly to optimized serial libraries (D3 Canvas and G6) up to the
highest number of nodes, as there was not much GPU power for
them to take advantage of. On the dedicated GPU, we can see that
WebGL based libraries perform much better, with Stardust main-
taining about equal FPS toGraphWaGuuntil passing 10,000 nodes
and 200,000 edges, which is the limit of Stardust graph render-
ing. For small sized graphs, all frameworks perform well, hence
the FPS performance reaches the nominal limit of 60 FPS. For
larger graphs,GraphWaGushows better performance compared to
other frameworks. The reason behind this are differences between
the structure of theGraphWaGusystem and the WebGL based li-
braries. These require a higher number of draw calls (which are
costlier) than WebGPU to re�ect the change of state in between
the passing of frames. WebGPU allows resources and command
bounding together in groups for dispatching them in chunk on
GPU, which reduces the CPU overhead and improves performance.

We report that we are able to maintain interactive rendering
(� 10 FPS) until 100,000 nodes and 2,000,000 edges on the dedi-
cated GPU system, while NetV.js is the only other library that main-
tains rendering, at 3 FPS. The rendering ofGraphWaGucontinues
to be possible until 200,000 nodes, and 4,000,000 edges, a bench-
mark that is not possible on any other web-based graph visualiza-
tion library. (see Figure 3).

4.3. Layout Computation Benchmarks

In this section, we evaluate the ef�cacy ofGraphWaGuFR and
GraphWaGuBH layout computation functionality. Because tech-
nologies like Stardust and NetV.js support only rendering while re-
lying on other libraries to create graph layouts, we evaluate our sys-
tem only against D3.js's D3-force layout computation ability. This
library utilizes a Barnes-Hut approximation of repulsive forces, so
that each iteration of its algorithm is O(jVjlogjVj), but it is only
a serial implementation created in javascript. As with rendering,
we use the synthetic graphs described in experimental setup to run
benchmarks for our layout computations. We create one graph for
each size chosen, and compute the layout determined by its ran-
dom structure withGraphWaGuFR, GraphWaGuBH, and D3-
force. For each generated graph, we measured the average iteration
time of the force-directed layout algorithm after computing 87 it-
erations (i.e., enough iterations to reach equilibrium for the graphs
being used). Because graph rendering and layout computation are
coupled in theGraphWaGusystem through the setup of WebGPU
command encoding, each iteration time includes both layout com-
putation and rendering of the current graph layout on that frame.

Figure 5 shows the results for the integrated GPU. We observe
that GraphWaGuFR yields the best performance for graphs with
relatively fewer number of nodes, however, D3-force outperforms
GraphWaGualgorithms for graphs with larger number of nodes.
This is because the low computational bene�t offered by the low-
end dedicated GPU does not offset the additional cost of creating
and running the compute pipelines forGraphWaGuBH here; the

© 2022 The Author(s)
Eurographics Proceedings © 2022 The Eurographics Association.

